On a Generalization of Carlitz’s Congruence

نویسندگان

  • Hao Pan
  • HAO PAN
چکیده

Let p be an odd prime and a be a positive integer. We show that p−1 k=0 (−1) (a−1)k p − 1 k a ≡ 2 a(p−1) + a(a − 1)(3a − 4) 48 p 3 B p−3 (mod p 4), which is a generalization of a congruence due to Carlitz.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arith . , in press . ON q - EULER NUMBERS , q - SALIÉ NUMBERS AND q -

for any nonnegative integers n, s, t with 2 ∤ t, where [k]q = (1−q)/(1−q); this is a q-analogue of Stern’s congruence E2n+2s ≡ E2n +2 (mod 2s+1). We also prove that (−q; q)n = ∏ 0<k6n(1 + q ) divides S2n(q) and the numerate of C2n(q); this extends Carlitz’s result that 2 divides the Salié number S2n and the numerate of the Carlitz number C2n. Our result on q-Salié numbers implies a conjecture o...

متن کامل

2 Hao Pan and Zhi

for any nonnegative integers n, s, t with 2 ∤ t, where [k]q = (1−q)/(1−q), this is a q-analogue of Stern’s congruence E2n+2s ≡ E2n +2 (mod 2s+1). We also prove that (−q; q)n = ∏ 0<k6n(1 + q ) divides S2n(q) and the numerate of C2n(q), this extends Carlitz’s result that 2 divides the Salié number S2n and the numerate of the Carlitz number C2n. For q-Salié numbers we also confirm a conjecture of ...

متن کامل

Acta Arith. 124(2006), no. 1, 41–57. ON q-EULER NUMBERS, q-SALIÉ NUMBERS AND q-CARLITZ NUMBERS

for any nonnegative integers n, s, t with 2 ∤ t, where [k]q = (1−q)/(1−q); this is a q-analogue of Stern’s congruence E2n+2s ≡ E2n +2 (mod 2s+1). We also prove that (−q; q)n = ∏ 0<k6n(1 + q ) divides S2n(q) and the numerator of C2n(q); this extends Carlitz’s result that 2 divides the Salié number S2n and the numerator of the Carlitz number C2n. Our result on q-Salié numbers implies a conjecture...

متن کامل

Preprint (2005-05-25), arXiv:math.CO/0505548. ON q-EULER NUMBERS, q-SALIÉ NUMBERS AND q-CARLITZ NUMBERS

for any nonnegative integers n, s, t with 2 ∤ t, where [k]q = (1−q)/(1−q), this is a q-analogue of Stern’s congruence E2n+2s ≡ E2n +2 (mod 2s+1). We also prove that (−q; q)n = ∏ 0<k6n(1 + q ) divides S2n(q) and the numerate of C2n(q), this extends Carlitz’s result that 2 divides the Salié number S2n and the numerate of the Carlitz number C2n. For q-Salié numbers we also confirm a conjecture of ...

متن کامل

q-Stirling Identities Revisited

We give combinatorial proofs of q-Stirling identities using restricted growth words. This includes a poset theoretic proof of Carlitz’s identity, a new proof of the q-Frobenius identity of Garsia and Remmel and of Ehrenborg’s Hankel q-Stirling determinantal identity. We also develop a two parameter generalization to unify identities of Mercier and include a symmetric function version.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008